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Abstract—In wireless ad hoc networks, autonomous nodes are  The packet forwarding problem in ad hoc networks has been

reluctant to forward others’ packets because of the nodes’ limited extensively studied in the literature. The fact that nodes act

energy. However, su_ch selfishness and noncooperation deterioratesemsmy to optimize their own performances has motivated
both the system efficiency and nodes’ performances. Moreover,

the distributed nodes with only local information may not know many researchers to apply the game theory [1], [2] in solv-

the cooperation point, even if they are willing to cooperate. Hence, ing this problem. Broadly speaking, the approaches used in
it is crucial to design a distributed mechanism for enforcing encouraging the packet forwarding task can be categorized

and learning the cooperation among the greedy nodes in packet jnto two methods. The first type of methods makes use of
forwarding. In this paper, we propose a self-learning repeated- virtual payment. Virtual currency, pricing, and credit based

game framework to overcome the problem and achieve the . o
design goal. We employ self-transmission efficiency as the utility method [3], [4] fall into this first type. The second type of

function of individual autonomous node. The self transmission approaches is related to personal and community enforce-
efficiency is defined as the ratio of the power for self packet ment to maintain the long-term relationship among nodes.

transmission over the total power for self packet transmission Cooperation is sustained because defection against one node
and packet forwarding. Then, we propose a framework to search ¢4 ,5e5 personal retaliation or sanction by others. This second

for good cooperation points and maintain the cooperation among . - .
selfish nodes. The framework has two steps: First, an adaptive approach includes the following works. Marti et al. [S] propose

repeated game scheme is designed to ensure the cooperatiodN€chanism callewatchdogandpathraterto identify the mis-
among nodes for the current cooperative packet forwarding behaving nodes and deflect the traffic around them. Buchegger

probabilities. Second, self-learning algorithms are employed to et al. [6] define protocols based on reputation system. Altman
find the better cooperation probabilities that are feasible and et al. [7] consider a punishment policy to show cooperation

benefit all nodes. We propose three learning schemes for different ticipati d In 181 H t al | .
information structures, namely, learning with perfect observ- among participating nodes. In [8], Han et al. propose learning

ability, learning through flooding, and learning through utility ~ repeated game approaches to enforce cooperation and obtain
prediction. Starting from noncooperation, the above two steps better cooperation solutions. Some other works using game

are employed iteratively, so that better cooperating points can be theory in solving communication problems can be found in
achieved and maintained in each iteration. From the simulations, [9], [10], and [11]

the proposed framework is able to enforce cooperation among Si . irel tworks. it is difficult to imol
distributed selfish nodes and the proposed learning schemes INCe In Some wireless networks, It Is dimcult to imple-

achieve 70% to 98% performance efficiency compared to that ment the virtual payment system because of the practical
of the optimal solution. implementation challenges such as enormous signaling. In this

paper, we concentrate on the second type of approaches and
design a mechanism such that cooperation can be enforced in
|. INTRODUCTION a distributed way. In addition, unlike the previous works which

Some wireless networks such as ad-hoc networks congisgume the nodes know the cooperation points or other nodes’
of autonomous nodes without centralized control. In sudighaviors, we argue that randomly deployed nodes with local
autonomous networks, the nodes may not be willing to fulpformation may not know how to cooperate even if they are
cooperate and accomplish the network task. Specifically f8#ling to do so. Motivated by these facts, we propose a self-
the packet forwarding problem, forwarding the others’ packef@@rning repeated-game framework for cooperation enforcing
consumes the node’s limited battery resource. Therefore2ftd learning.
may not be of the node’s best interest to forward others’ We define the self-transmission as the transmission of a
arriving packets. However, rejection of forwarding otherdiSers own packets. We quantify the node’s utility as its self-
packets non-cooperatively will severely affect the networikansmission efficiency, which is defined as the ratio of the
functionality and impair the nodes’ own benefits. Hence, it ROWer for successful self transmission over the total power
crucial to design a mechanism to enforce cooperation amdrgfd for self transmission and packet forwarding. The goal
greedy nodes. In addition, the randomly located nodes widh the node is to maximize the long-term average efficiency.

they are willing to cooperate. game framework is proposed to ensure cooperation among

autonomous nodes. The framework consists of two steps: First,
This work is partially supported by MURI AFOSR F496200210217.  the repeated game enforces cooperation in packet forwarding.
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Let's denote the set of sources and destinations %is
learning maintain learning maintain D;}, for ¢ = 1,2,--- , M, where M represents the number

cooperation cooperation of source-destination pairs that are active in the network.
Suppose the shortest path for each source-destination pair
has been discovered. Let's denote the route/patiRas=
(Snféi7f12:gi7 e ,fgi,Di), wheresS; denotes the source node,
This first step ensures that any cooperation equilibrium thH¢ denotes the destination node, abff; , /7., ., } is

is more efficient than the Nash Equilibrium (NE) of thdhe set of intermediate/relay nodes, thus, therenafrel hops

one stage game can be sustained. The repeated game all{8 Source node to the destination node. Vet {R; : i =

nodes to consider the history of actions/reactions of their "' -4/} be the set of routes corresponding to all source-
opponents in making the decision. The cooperation can ggstln.a.tlon pairs. Let's denote further the s_e_t of routes where
enforced/sustained using the repeated game, since any devpgleJ is the source a¥’s = {R; : S(R;) = j,i =1... M},
tion causes the punishment from other nodes in the futu}’}éhere S(R?) reprgsents the source of roufg. The_z power
The second step utilizes the learning algorithm to achie§¥Pended in node for transmitting its own packet is
the desired efficient cooperation equilibrium. We propose Q)
three learning algorithms for different information structures, P = Z sy - K- d(S(r),n(S (), m))", @
namely, learning with perfect observability, learning through
flooding, and learning through utility prediction. Starting fronwhere .5,y is the transmission rate of source nafle-), K
the non-cooperation point, the two proposed steps are appliecthe transmission constant(i, ;) is the distance between
iteratively. A better cooperation is discovered and maintaineegde ; and nodej, n(i,r) denotes the neighbor of node
in each iteration, until no more efficient cooperation poirdn router, and~ is the transmission path-loss coefficient.
can be achieved. From the simulation results, our proposedr the link from nodei to its next hopn(i,r) on router,
framework is able to enforce cooperation among selfish nodés: d(i, n(i,r))” describes the reliable successful transmission
Moreover, compared to the optimal solution obtained kyower per bit transmission. We note that equation (1) can
a centralized system with global information, our proposeslso be interpreted as the average signal power required for
learning algorithms achieve similar performances in the symuccessful transmission of certain ratg,. This implies that
metric network. Depending on learning algorithms and thtee transmission failure due to the channel fading has been
information structures, our proposed schemes achieve naaken into account by the transmission const&int
optimal solution in the random network. Let o; for : = 1,--- , N be the packet forwarding proba-
This paper is organized as follows: In Section Il, we givgility for node i. Here, we use the same packet forwarding
the system model and explain the design challenge. In Sectigmbability for every source-destination pairs because of the
lll, we propose and analyze the repeated-game framework fellowing reasons. First, based on the greedy assumption of
packet forwarding under different information structures. Ithe nodes, there is no reason for one particular node to
Section IV, we construct self-learning algorithms corresponébrward some packets on some routes and reject forwarding
ing to different information structures in details. In Section Vother packets on other routes. Second, the use of different
we evaluate the performances of our proposed scheme uswagket forwarding probability on different routes will only
extensive simulations. Finally, the conclusions are drawn gomplicate the deviation detection of a node and it will not

Fig. 1. lllustration of time-slotted transmission to two alternative stages

revy

Section VI. change the optimization framework proposed in this paper.
So in our first step to analyze the problem, we assume the
Il. SYSTEM MODEL AND DESIGN CHALLENGE same forwarding probability on every route. In the future work,

We consider a network with’ nodes. Each node is batteryWe aré also exploring the case where the nodes use different
powered and has transmit power constraint. This implies tHRACket forwarding probability for different routes.
only nodes within the transmission range are neighbors. TheCléarly, probability of successful transmission from node
packet delivery typically requires more than one hop. In eaéhl© its destination depends on the forwarding probabilities
hop, we assume transmission occurs in a time-slotted manfgtPloyed in the intermediate nodes and it can be represented

as illustrated in Figure 1. The source, the relays (intermedi&te ‘

nodes), and the destination constitute an active route. We Pry . = I1 oy, (2)

assume an end-to-end mechanism that enables a source node to JE(r\{S(r)=i,D(r)})

know if the packet is delivered successfully. The source nod%
a

. . i here D(r) is the destination of routeé and (r \ {S(r) =
can observe whether there is a packet drop in one particu b . .
X 1. D(r)}) is the set of nodes on routeexcluding the source
active path. However, the source node may not know where o , ; .
; : . ._and destination. Let's define thgood powerconsumed in
the packet is dropped. Finally, we assume that routing decision . . 0)
S fransmission nod¢ P, . as the product of the power used
has already been done before optimizing the packet forward%g fransmitting nodei”g own packet and the probability of
probabilities.

successful transmission from nodéo its destination,

1We note that it is always possible for nodes to do manipulation in the (4) :
routing layer. However, it is beyond the scope of this paper. For more Ps,good = Z HS(r) K- d(S(r),n(S(r),r))”P%x,,r. 3)
information, please refer to [16] revs



Moreover, let the set of routes where ngdis the forward- Unfortunately, the NE for the packet forwarding game de-
ing node bel/;. The power used to forward others’ packetscribed in (7) is; = 0, Vi. This can be verified by finding the

is given by forwarding probabilitye; € [0, 1] such that/(® is unilaterally
) R ; maximized. To maximize the transmission efficiency of node
Ppl=ai K- Z d(i, (i, 7)) ps () Py (4) , the node can only make the forwarding ene@y) as
reWw;

small as possible. This is equivalent to setting as small

where PET is the probability that node receives the packet as possible, since the successful probability of its own packet
to forward in router, and>, _y. 15 (r) P}?,r is the total rate transmission in (2) depends only on the other nodes’ willing-
that nodei receives for packet forwarding. The probability thafess to forward the packets. By greedily dropping its packet

nodei receives the forward packet in routds represented as forwarding probability, node reduces its total transmission
power used for forwarding others’ packets, therefore, increases

Pfi?,r = H Qaj, (5) its instantaneous efficiency. However, if all nodes play the
FE{fL,F2, f 1Y} same strategy, this causes zero efficiency in all nodes, i.e.,
_ UW(at...ak) = 0, Vi. As the result, the network breaks
= L., fm=1 m _,; . fn 1 N ’ L L
n/]here Tlfh{s(r)’ i[” f Jr ’fé i’ d ’{T’?(;)g )'S down. Hence, playing NE is inefficient not only from the
edrf[; thofps roudg romdsokjlr(.: (T)d ° ngs m; 0 d(T)’ network point of view but also for the individual's own benefit.
and them™ forwarding nodef," is nodei. Py, depends on It is very important to emphasize that the inefficiency of NE is

the packet forwarding probabilities of the nodes on the rouitﬁdependent to the utility function in (7). This inefficiency is

r before node. merely the result of greedy optimization unilaterally done by

We refer 10 the task of transmitting the nade own Imcorér;\ch of the nodes. In the next two sections, we propose a self-

mation as seIf-transm|SS|on and the task of relaym_g .Othe@arning repeated-game framework and show how cooperation
packets as packet forwarding. We focus on maximizing tI}

%n be enforced using our proposed scheme.
self-transmission efficiencyhich is defined as the ratio of g prop
successful self-transmission power (good power) over thdll. REPEATED-GAME FRAMEWORK AND PUNISHMENT

total power used for self-transmission and packet forwarding. ANALYSIS
Therefore, the stage utility function for nodecan be repre-  As demonstrated in Section Il, the packet forwarding game
sented as @ hasal = 0, Vi as its unique Nash equilibrium if the game is
U(“( } N s,g00d only played once. This implies that all nodes in the network
Q) = ——5 . (6) , o ) :
pY +p}l) won't be cooperating in forwarding the packets. In practice,
nodes typically participate in the packet forwarding game for
where a; is nodei's packet forwarding probabilitye—; = 3 certain duration of time, and this isore suitablymodelled
(a1, i1, @541, - ,an)" are the other nodes’ forward- a5 a repeated game (a game that is played in multiple times).

ing probability. Putting (1), (3) and (4) into (6), we obtainf the game never ends, it is called infinite repeated game
(7). Since the power for successful self-transmission depengigich we will use in this paper. In fact, the repeated game
on the packet forwarding used by other nodes, the sejffay not be necessarily infinite. The important point is that
transmission efficiency captures the trade-off between thg nodes/players do not know when the game ends. In this
power used for packet transmission of its own informatiogense, the properties of the infinitely repeated game can still
and packet forwarding for the other nodes. be valid. In this paper, we employ the normalized average

The problem in packet forwarding arises because the ayiscounted utility with discounting factaf given by:
tonomous nodes such as in ad-hoc networks have their own

authorities to decide whether to forward the incoming packets. 7 = 1im 7@ = (1—90) E sV @),  (9)
. . .. 0 h t ’
Under this scenario, it is very natural to assume that each oo =1

node selfishly optimizes its own utility function. In parallel tq/vhere&(t) = (a1,...,an)T, UD(d(t)) is the utility of node

(7), nodei selectsa; in order to maximize the transmission. . oW
S ) o . . at each stage game (7) played at timpeand U,,” is the
efficiencyU " («;, ;). This implies that nodewill selfishly ! g€ g (7) play I !

e ; ) normalized average discounted utility from tirheio time ¢'.
minimize P;~, the portion of energy used to forward othersyy,jike the one-time game, the repeated game allows a strategy
packets. In the game theory literature [1], [2], Nash Equilit,, e contingent on the past moves and resuilts in the reputation
rium (NE) is a well-known concept, which states that in thg,q etribution effects, so that cooperation can be sustained
equilibrium every node selects the best response strategy to[tﬂt'a [13], [14]. We also note that the utilities in (7) and (9)

other nodes’ strategies. The formal definition of NE is givel.o indeed heterogeneous in the sense that they carry the

as follow o _ _information about the channel, routing, and node behaviors. In
_ Deflnltlgn 1 De*fmjga feasible rang@ as[0,1]. Nash EQui- other words, the utility functions in (7) and (9) reflect different
librium [af, -- -, a}y]" is defined as: energy consumption according to different distance, rate, and

UD(ar,a*,) > UD(qy,a*,), Vi, Yo, € Q, (8) route between nodes.
i.e., given that all nodes play NE, no node can impro®. Design of Punishment Scheme under Perfect Observability

its utility by unilaterally changing its own packet forward In this subsection, we analyze a class of punishment policy
probability. Herea* ; = (o, -+ ,af_j,af, 4, ,af)T. under the assumption of perfect observability. Perfect observ-



ZreV; tsyd(S(r),n(S(r), ) Hje(r\{S(r):i,D(r)}) «

U@ — - - :
Zrer tsryd(S(r), n(S(r), )7 + ai 3.y, d(i,n(i, 7)) s ) Hje{f},-u o1y 0

()

ability means that each node is able to observe actions taketnder the following conditions
by other nodes along the history of the game. This implies thatq the game is perfectly observable;
node knows which node drops the packet and is aware of the the corresponding dependency graph satisfies the
identity of other nodes. This condition allows every node to condition
detect any defection of other nodes and it also allows nodes to degout(i) > 0, Vi; (13)
know if any node does not follow the game rule. The perfect ] ] . . ] ]
observability is the ideal case and serves as the performancd- V' has full dimensionality ¥'* has dimensionality
upper bound. In the next subsection, this assumption is relaxed of N). We note thatV' has dimensionality ofV
to a more practical situation, where an individual node only implies that the space formed by all points W
has limited local information. has the dimensionality ol.
Let's denote the NE in one stage forwarding game adden, for any(vi,---,v,) € VT, there existss € (0,1),
a* = (af,- - ,a}‘V)T, and the corresponding utility functionssuch that for allé € (9, 1), there exists an equilibrium of the
as (vi,---,vi)T = (UD(@), -, UM (@*))T. We also infinitely repeated game with nodés average utilityv;.
denote Proof: Let @ = (ay,---,ax)? be the joint strategy
N results in (UM(&),--- ,UMN)(&)). The full dimensionality
U = {(v,--,on)F0 € (20)  condition ensures the sevV(a), -, UV=D(a), U0 (@) —
st (v, ,on) = (UD(@), - ,UN(@))}, e, UUH(@), -, UN)(@)) for anye > 0, is in VI. Let
V = convex hull of U, (11) nodei's maximum utility bev; = maxz U (@), Vi. This
o 4 Ty maximum utility is obtained when all nodes try to maxi-
Vio= Al o) € Ve > e, Vil (12) mize nodei’s utility. Let the cooperating utility bey; =
We note thatV consists of all feasible utilities, an& T () (a) € V1, Vi. The cooperating utilities are obtained when
consists of feasible utilities that Pareto-dominate the one stagenodes play the agreed packet forwarding probabilities. Let
NE, this set is also known as the individually rational utilitthe maximum utility node; can get when it is punished be
set [1], [2]. The Pareto-dominant utilities denote all utilites, = max,, min,_, U®(d). Let's denote nodej’s utility
that are strictly better than the one stage NE. From the gamaen punishing node as w . We note that from (7), the
theory literature [2], [13], [14], the existence of equilibria thamax-min utility v, coincides W|th the one stage NE. If there
Pareto-dominate the one stage NE is given by the Folk theoreRist e and the pumshment period for nodgT;, such that
[14]. :
Theorem 1 (Folk Theorem [14])Assume that the dimen- #
sionality of VT equals taV. Then, for any(vy, - -- , vy ) in VT, . o i )
there exists € (0,1) such that for alb € (8, 1), there eX|sts .then the following rules ensure any individually rational util-
an equilibrium of the infinitely repeated game with discountelf€S can be enforced.
factor & in which playeri’s average utility isv;. 1) Condition I: All nodes play cooperation strategies
Before we give the application of Folk theorem in the  if there is no deviation in the last stages. After any
packet forwarding game, it is useful to recall the notion  deviations go to Condition Il (Suppose nogléeviates).
of dependency grapI’Given the routing a|gorithm and the 2) Condition II: Nodes that can punish the deviating node
source-destination pairs, the dependency graph is the directed (nodej) play the punishing strategies for the punishment
graph that is constructed as follows. The number of nodes in  period. The rest of the nodes keep playing cooperating
the dependency graph is the same as the number of nodes strategies. If there is any deviation in Condition I, restart

<(1+T), (14)

in the network. When node sends packets to nodg via Condition Il and punish the deviating node. If any pun-
nodesf!,---, f™, then there exist directed edges from node ishing node does not play punishment in the punishment
i to nodesf!,--- , f". The resulting dependency graph is a period, the other nodes will punish that particular node
directed graph, which describes the node dependency in per- during the punishment period. Otherwise, after the end
forming the packet forwarding task. Let’s defideg;, (i) and of the punishment period, go to Condition III.

degou: (i) as the number of edges going into naded coming ~ 3) Condition 1ll: Play strategy that results in utility
out from nodei, respectively. Obviouslyjeg;, (i) indicates of (UM, =D g — ¢ ygb+h ... g f

the number of nodes whose packets are forwarded by node there is any deviation in Condition Ill, start Condition

i and degou: (i) is the number of nodes that help forward Il and punish the deviating node.

node i’s packets. Using the notation of the corresponding First, the cooperating strategy is the strategy that all nodes
dependency graph, the application of Folk theorem in packsgree upon. In contrast, the punishing nodetrategy, is
forwarding game is stated as follow: the strategy that results in max-min utility in nodev, =

Theorem 2:(Existence of Pareto-dominant forwardingmax,, min,,_, U@ (&). In the sequel, we show that under the
equilibria under perfect observability) proposition’s assumptions:



.. . o : Traffic flows:
« the average efficiency gained by the deviating node is 0@ 15953 3045 56

smaller than the cooperating efficiency, @ B 165 3521 5-4-3
« the average efficiency gained by the punishing node that 2->3—4 4->5->6 6->1-2
does not play the punishment strategy in the punishment @ 2-1-6 5362 (t)6;5%4 m)
stage is worse than the efficiency gained by that node original Graph U (1)=—m wzﬁza, (z) v
when it conforms to the punishing strategy.
If node j deviates in Condition | and then conforms, it o >©< /—23 o4 \>< %23
receives at most; when it deviates; for 7 periods S VU WZR ) SN WA
when it is punished, andU") — ¢) after it conforms to the v, o° F o, ‘
cooperative strategy. The average discounted deviation utility ot ﬂ\_/ﬁ °
can be expressed as: I e A e e ey A
o STy T;+1 ‘ Dependency Graph's ** e s
09 5, + 6(11 _(i; )Qj n (i — U ). (15) deg, (1) = deg,, (1) =2 Vi M E:;Tj@ Z: \>< >L
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Since if the node conforms throughout the game, it has the
average discounted utility Gfi—éU(j). So the gain of deviation Fig- 2. Example of the punishment scheme under perfect observability
is given by:

AUY =) — 1 5U(j) The same argument of no node deviating in Condition |
- _— 1= can be used to show that no nodes deviates in Condition Ill.
= 6(1—079) o 1-0% U@ — &), 16) Therefore, we conclude that deviations in all Conditions are
<v; + v, ( €) (16) .
1-96 1-9¢ not profitable. u

We note that; coincides with the one stage NE, which is The proof above is based on two conditions: First, the proof
v; = 0,Vj. As § — 1, 1“5_T"+1 tends tol + 7;. Under the assumes that there always exist nodes that can punish the devi-
condition of (14), the deviation gain in (16) will be strictlyating nodes, this is guaranteed by the assumptigg,,; () >
less than zero. This indicates that the average cooperatihig the corresponding dependency graph. Secondly, nodes are
efficiency isstrictly larger than the deviation efficiency. Henceable to identify which node is defecting and which node does
any rational node will not deviate from the cooperation poinnot carry out the punishment. This is guaranteed by the perfect

If the punished node still deviates in the punishment periodbservability assumption. The strategy of punishing those who
the punishment period (Condition 1I) restarts and the punistrisbehave and those who do not punish the misbehaving nodes
ment duration experienced by the punished node is lengtheneah be an effective strategy to cope with the collusion attack.
As the result, deviation in the punishment period postponesNow let’s consider the following example to understand the
the punished node from receiving the strictly better utilitpunishment behavior. We assumg,) = 1, K = 1, and
(UU) — &) in Condition Ill. Hence, it is better not to deviated(i, j) = 1. The resulting utilities are shown in Figure 2. Each

in the punishment stage. node has the one stage utility as:

On the other hand, if punishing nodedoes not play the o ‘ ta ‘
punishing strategy during the punishment of ngdenode () — 2modi-2.6)+1 " “modi6)+1 (21)
receives at most 24 2qy

s 1—6T T+1 By selecting the discounted factof, = 0.9 and T = 2
U§;>=m+5( o)y 48 y )

1—-5 ' 1= 5< appropriately, all nodes are better-off when they are cooper-
However, if nodei conforms with the punishment strategy, i@ing in packet forwarding by setting; = 1,Vi. If all nodes
will receive at least conform to the cooperative strategies, thetage normalized
5T §T+1 average discounted utilities defined in (9) are giverﬂlé? =
00 = (1- )wf . 440} (18) 0.2343, Vi. In Figure 2, we plot the utility functions and
_ 1-9 1-9¢ forwarding probabilities of all nodes. The x-axis of the plot
Here w! is the utility of node: to punish nodej. Therefore, denotes the round of game, the left y-axis denotes the value
nodes’s reward for carrying out the punishment is (18) minusf node’s utility, and the right y-axis denotes the value of

U® —¢).  (17)

@, forwarding probability. The forwarding probability is denoted
o o (1—67) . §T+1g by the squared plot and the utility function is denoted by the
U8 = U = 5—5(w] —ov,) —wi+ T—5. (19) plot with stars.

In Figure 2, we show that nodeis deviating in the second
round of the game by setting its forwarding probability to
zero. At this time, node 1’s utility changes frofns to 1 as

U9 —09 =T w! —v; + —— (20) seen in the figure. As the consequence, nddend node6
’ 1-4 are punishing nodé at the followingT" = 2 stages by setting
By selectingd close to one, this expression can be alwayheir forwarding probabilities to zeros. In the third round of
larger than zero. As the result, the punishing node alwatf®e game, nodé has to return to cooperation. Otherwise, the
conforms to the punishment strategy in the punishment staganishment from others restarts and consequently the average

Using v;, = 0,Vi and letd — 1, the expression (19) is
equivalent to



discounted utility will be further lowered. After the punish-punishment stage or not. As soon as one of the nodes sees the
ment, all nodes come back to the cooperative forwardimtpviation, it starts the punishment period. This will quickly
probabilities (as shown in the figure). The resultiigtage start another punishment stage by other nodes, since the nodes
normalized average utilities are as foIIov(Z%l) = 0.2023, cannot differentiate if the change in stage efficiency is caused
U = U = 02887, UY = U = 0.1958, and by the punishment stage or the deviating node. As the result,

(6
U = 0.2343. So nodel has less utility by deviation than the defection spreads like an epidemic and cooperation in the

by Cooperation_ Moreover, if both nodeand node6 fail to whole network breaks down. This is known as dllmtagious

punish nodel, they will be punished by other nodes during&quilibrium[m]. Indeed, the only equilibrium in this situation

the following 7' periods of game. The resulting normalizeds the one stage NE. _ S
average utilities aré]’él) — 0.3485 Ué2) _ UéG) — 0.1425 The main reason of the contagious equilibrium is that all

UéS) _ (76(5) — 0.3035, andUé‘” — 0.165. Therefore, node nodes have thenconsistentbeliefs about the sta’Fe of the
: e'system, they do not know whether the system is currently

they will in turn be punished and have less utility. Thd the punishment stage, the deviation state, or the end of

same argument can be used to prevent nodes deviating fr%%\!shment stage. Therefore, any mistake in invoking the

the punishment strategy. We note that in this example tﬁgr&'srﬂﬁm stag_etca? kcausledthe C?r:;[]agioust equi![ibtrium. Tge
corresponding dependency graph Wag;,, (i) = degou:(i) = ack of the consistent knowledge of the system state can be

2,Vi. Therefore, there are always punishing nodes avaiIaﬁnelggatet;j using con|1mun|czt|o?s ?et;(]wee:lhnodesd Slljpbpohse gach
whenever any node deviates. _T_E € Observes tc?n ya stu ie Od b € other notr(]ast N hawo(;s.
Finally, we discuss the discounting factowhich represents € communication IS introduced by assuming that each node

theimportance of the futurdn the case where the discounting{;‘rﬂkes a public_annou_ncement about the behav_iors of the nodes
factor is small, the future is less important. This will caust ?2Serves. This public announcement can be implemented by

the pathological situation where the instantaneous deviati gving the nodes exchange the behaviors of nodes they observe

gain of the defecting node exceeds any future punishmé Eough broadcasting. The intersection of these announcements

by the other nodes. Therefore, it is better-off for the nodé" be utilized to identify the deviating node. At the end of

to deviate rather than to cooperate and it becomes very h ﬁfh stage game, thg n.odes report' either no nodes deviate or
(if not impossible) to encourage all nodes to cooperate e identity of the deviating node. Since these announcements

this scenario. We also note that the selfish nodes are bettéf- be exchanged in a relatively low frequency and only to the
off to choose thes approaching to one. Since if the nodéd® ated nodes, the communication overheads are limited. Under

chooses) that closes to zero, this implies that the future iLh'S local observability assumption, the following theorem

not important to the node, the node will definitely ask othéPSpired by the Folk Theorem for privately monitoring with

- . o ication [15] is proposed
nodes for transmitting his own packet at very beginning gpmmunica i t . . . .
the game and stop forwarding others’ packets afterward. Th.lSTheorem 3:Supposev' has dimensionality (full dimen-

will invoke punishment from its neighboring nodes by no ionality), whereN is the number of nodes in the network.

forwarding that particular node’s packets. This implies th ftevery nodei is monitored by at least two other nodes, this

that node will automatically be excluded from the networli.mloIIes the following:

Therefore, it is better-off for nodes in the network to choose L+ |f node participates in the routes that have only
5 approaching to one. hops, thendeg;,, (i) > 2 is sufficient.

2. If node ¢ participates in the routes which one of
. . the routes has onl2 hops, thendeg;, (i) > 3 is
B. Design of Punishment Scheme under Imperfect Local Ob- sufficient.
servability 3.  If node: participates in the routes which have more
We have shown that under the perfect observability assump- than2 hops, thendeg;,, (i) > 4 is sufficient.

tion, the packet forwarding game along with the punishmenlso, there always exists a node that can punish the deviating
scheme can achieve any Pareto-dominant efficiency. Howevesde, i.e.,
the perfect observability may be difficult to implement in ad- degout(i) > 0, Vi. (22)

hoc netWOka, due to the enormous overheads and Signalim)reover’ the monitoring nodes can exchange the Observa_
Therefore, we try to relax the condition of the perfeCt Oh_'ions_ Then' for everyv in the interior of V]L’ there exist
servability in this subsection. There are many difficulties ig c (0, 1), such that for alb € (8,1), v = (v, - - ,vy) is an

removing the perfect observability assumption. Suppose eagduilibrium of an infinitely repeated game in which node
node observes only its own history of stage utility functionayerage utility isv,.

In this situation, the node knows nothing about what has proof: Suppose there exist § and punishment period
been going on in the rest of the network. The node only, such that (14) holds and
knows the deviation of nodes on which it relies on to do

max,;{Ti}—l
packet forwarding. And it cannot detect the deviation in the st N
other part of the network, even though it can be the one that ; mzax{&l,% (vz(a) vila ))}
can punish the deviating node. Therefore, it is impossible )
to implement the Folk Theorem in this information limited < Z Sle, (23)

situation. Moreover, nodes may not know if the system is in t=max; {T;}



then the following rules of the game (Condition | to ll)as UM, ... UG-V Ul — ¢ yG+h ... UWN) after pe-

achieves the equilibrium whedeg;,, (i) = 2, Vi. nalizing nodes that make inconsistent announcements (i.e. in
Condition I: If there is no announcement of the deviatingtate with utilityrU® ... . U® —¢ ... UO —¢ ... UWN),
nodes where nodée: and!/ are the nodes that previously make incon-
a. If the previous stage is in cooperating state, continue tiStent announcements, or in state with utitit§®), - - -, U'") 4
cooperating state. g, ,U® —¢ ... UN In all these states, the deviator
b. If the nodes play the following strategy in the previou§node;) will be punished for a certain period of time (Con-
stage dition lla). However, if the previous state is in punishing
(1) (1) 17(8) (k1) ™) node j;, then the system switches to strategy that results in
oWw,....u JUW —e U oo, UM UW . gl 4o ... UG ¢ ... UM (Condition IIb).
for k € {1,---, N}, continue the previous state. This strategy gives additional incentives((2) + ¢) for node

c. If the previous stage is in punishing nodiestate and the J2 0 punish to nodg. Obviously, nodej; has the incentive to
punishment has not ended, then continue the punishi@gnounce if nodg deviates, since this announcement will end

Otherwise, switch to strategy that results in nodej; punishment. Because of the possible early termination
) - . - N of the punishment period, nodg also has the incentive
W, u*= gk — e gD . ), to wrongly incriminate nodej, this particular case will be

Condition IIf node j is incriminated by both of its monitors Préevented by Condition lila. Condition Ilb is also used to
j1 and jo avoid the situation where nodg lies on its announcement

. ) . . , even though it observes that nogleleviates. This condition
a. If the previous stage’s strategy is either in the. . . -
following states: punishing nodej, implementing will become obvious as we discuss the Condition IlI.
' ' Next, we consider the case where there are incompatible

1 j—1 j 41 N i
r(.,:{;nii’n'é '([’][(]1()]7,,),’7(](](](3‘)__6;’[].7 7[)]7('5 ._, Z()),(}Tﬁji announcements. We note that incompatible announcements
for somel + 4, or in implementing(U(l) RO imply that there are two nodes or two groups _of nodes
D sy f I . th’ tart that make different announcements on the deviation. These
& & ) or somel # j, then star announcements can be in the forms of either ngdés

the punishme_znt stage fof punishing no_jje_ .. only incriminated by one of the nodes (a group of nodes)
b. If the previous stage’'s strategy is in punishin

) . '%r two different nodes are incriminated by two other nodes
noc(jle) T the(p)swnch o (Fr)]e strategy(Nt)hat resu_lts Irz'[wo other groups of nodes). When there are incompatible
.(U o U e, U e, U )- The sim- 2 h suncements about nogi€Condition 111) and the previous
llar argument s app_lled to_lncrease Woﬁs utility by & state is not in punishing nodg or j», the nodes that make
whgp nodey, is pumshed n t[he pr?‘"'ous stage. incompatible announcements will be penalized and they will

Condition Ill:  If there is any inconsistent announcemenigceive utility U+ — & for i = 1,2 (Condition 11Ib). In the

by nodej; and j,. We note that the inconsistent;ase when nodg is being punished in the previous stage, the
announcement happens when there are at least tWgngition Ila prevents nodg; from falsely accusing nodg
announcements of the deviation node, but the devigyndition Illa and Condition Iiib are sufficient to avoid lying
tion nodes in the announcements are different. i, announcement. However, including Condition Illa creates

a. If the previous state is punishing nogieor nodejs, then the situation where nodg, enjoy punishing nodej;. This

restart the punishment stage. ‘ means that when nodg is being punished and in the case
b. Otherwise, implemenfU™), .. . UW) —¢ ... U —  nodej has really deviated, node has the incentive to lie in its
€yt ,U(N))- announcement and announces that no nodes is deviating. This

In the above rules, we consider three different conditiongroblem is solved by Condition IIb that gives additional reward
namely when no announcement of deviating node (Conditiéor nodej, to tell the truth and punish node Moreover (23)
1), when the announcements are consistent (Condition I1), aimmdplies that this additional reward for noge outweighs the
when the announcements are inconsistent (Condition IIl). Thbanefit from punishing nodg;. (23) can be thought as the
we discuss the different strategies for different states withincentives for the monitoring nodes to punish the deviating
each Condition. We note that only the nodes whose packets aoele when the announcements are inconsistent.
forwarded by node have the potential ability of detecting the Previous arguments ensure that if every nodes in the network
deviation of nodgj. The above game rule ensures that if evergre monitored by at least two other nodes, then any feasible
nodes in the network are monitored by at least two other nodess V' can be realized. Next, we analyze the three cases
and there always exist nodes to punish the deviating node, thisted in Theorem 3. In the first case, if all routes that node
anyv € VT can be realized. participates have onlg hops, andieg;, (i) > 2, this implies

If both the monitors (nodej; and nodej,) of node j; that every node can be perfectly monitored by two or more
incriminate nodej, then nodej is punished in the similar nodes. It is obvious that the above game rules can be applied
way to the punishment in Theorem 1. The deviator (ngde directly. In the second case when nadearticipates in routes
is punished for a certain period of time if the previous stateith one of the routes of exactly hops, anddeg;, (i) > 3,
is in one of the following states: punishing noglestate (this both the announcement from the source of fhkop route
implies that the punishment stage will be restarted), finishatid the aggregate announcements from the sources of the rest
punishing node;j state (i.e. in the state with utility function of the routes serve as the final announcements. We note that



9 ------------- ) sustained. In fact, the system can be optimized to different
k cooperating points, depending on the system designer choices.
o @ For instance, the system can be designed to maximize the

bypass f weighted sum of the average infinitely repeated game’s utilities
e ' as follow
N @ N
Ugs = w(i)Uy, where > w(i)=1. (24
Fig. 3. Suppose the victim nod#§, is in the edge of the network and every i=1 i=1

transmission coming from nod& should go through nod¢. Suppose node
[ deviates and blocks the announcement frémNode S can increase the In particular, whenv (i) = %,Vi, maximize the average utility

transmission power to bypass nodeo broadcast the announcement. per nodes is usua”y employed in network optimization
N
. . . — 1 —(4)
the intersection of the aggregate announcements will do the Usys = N ZUDO- (25)
incrimination on a certain node. The node that does not tell the i=1

truth can be determined by majority voting method. Finally, We use (25) as an example, but we emphasize that any

for ther::asehwhere nci)ldqnaryupatesh in the routes W?'Ch h""Vesystem objective function can be incorporated into the learning
more t an‘(zj ops r?n egin(i) > 4, 1 efsolurcef] C"I’“? orm (;WO algorithm in a similar way. From individual point of view, as
grogps an duse_t e previous game of rule. The lying node Wil o< the cooperation can generate a better utility than the

e detected using majority voting. In summary, any potentigh ,qneration, the autonomous node will participate. More-
deviation in the network satisfying the conditions of Theore er, any optimization other than the system optimization can
3 can b? deteqted. Mq(gover, the game rules guarantee fjat, onitored by the other nodes as deviation. Consequently,
any feasible rational utilities can be enforced. B e punishment can be explored in the future

We note that from the announcement forwarder PEISPECTha pasic idea of the learning algorithm is to search itera-

tive, it faces two scenarios, namely either the annpuncem(ﬁ%ly the good cooperating forwarding probability. Similar to
contains negative information about the forwarder itself or {he punishment design, we consider the learning schemes for

contains negative information about the other nodes. In the fifgk. .ot information availability, namely, the perfect observ-

case, the forwarding node may not forward the announcemeggmty and the local observability. In parallel with the system

however, even though that node itself does not forward tl?%‘?odel in Section Il, we consider the time-slotted transmis-

announcemen;, dthere ISt onlytha sn’rl]altlhprobhat:mty ttt\:vat ktrﬁon that interleaves the learning mode and the cooperation
announcement does not go throug € whole network a3intenance mode as shown in Figure 1. In the learning

illustrated in Figure 3. Moreover, the condition that every no ode, the nodes search for better cooperating points. In the

is monitored by at leas2 nodes indicates that the illustrate ooperation maintenance mode, nodes monitor the actions of

case is less probable. In the second case, the forwardgmer nodes and apply punishment if there is any deviation.

nodes do not ha_ve any immediate gan for not forwardmg.trllﬁ the learning mode, the nodes have no incentives to deviate
announcement, i.e., the forwarder is indifferent of forwardin

h o the f di q b tgince they do not know if they can get benefits. So they do
€ announcement. However, Ine forwarding nodes are DeUgs: \yant to miss the chance of obtaining the better utilities
off to forward the truthful announcement in order to catc

d ish the deviati de. Otherwi the f di the learning mode. It is also worth mentioning that if a
and punis Ie bewalngtrr]]o ?'t. er]:/vtlie,d € tprwe_lr 't%de deviates just before a learning period, it will still be
nodes may aiso become the vicims ot he deviation n rﬂ)‘atmished in the following cooperation maintenance period. So
future. Moreover, the announcement consumes much lo

NN £ infinite repeated game assumption is still valid in this time
energy compared to the packet transmission itself. Hence, ¥ited transmission system
indifferent we meant, each node is better off while making '
a truthful announcement, which will consume just a small

portion of the energy transmission rather than a bigger loas Self-learning under the perfect observability

when it is deviated by the deviating node. Under th fect ob bility inf i fruct
Based on different information structures, analyses in Sec- nder the periect observabiiity information structure, every

tion IlI-A and Section 1lI-B guarantee that any individuallyngde IS abkl? tr? dedtecththle (fjewaugp of ‘;Ty d,efectlingt] n_?_(rj]g, fan(tj
rational utilities can be enforced under some conditions. Hofl~=c' Ve WhICh NOdes nelp forwarding oIners: packets. This fac
plies that every node is able to perfectly predict the average

ever, the individual distributed nodes need to know how {gipies t - . ;
g|C|enC|es of other nodes and optimize the cooperating point

cooperate, i.e. what the good packet forwarding probabiliti o L
are. In the next section, we describe the learning algorith se(_j on th? sys_tem criterion (25). The ba5|c_|dga of_the

. - earning algorithm is to use the steepest-descent-like iterations.
to achieve better utilities. . N

All nodes predict the average efficiencies of the others and
the corresponding gradients. The detailed algorithm is listed
as in Table I. Learning with perfect observability assumes
From Section Ill, any Pareto dominant solutions bettehe perfect knowledge of utility functions of all nodes in the

than one stage NE can be sustained. However, the analysm$work, and represents the best solution that any learning
does not explicitly determine which cooperation point to balgorithm can achieve.

IV. SELF-LEARNING ALGORITHMS



TABLE | TABLE I
SELF-LEARNING REPEATED-GAME ALGORITHM UNDER PERFECT SELF-LEARNING REPEATED-GAME ALGORITHM (FLOODING)
OBSERVABILITY

Initialization: ¢ = 0

For nodei: Given a_;, small incremen{3, ol = ag, Vi. Choose small incremet 7.

and minimum forwarding probability,,, i, lteration:¢t = 1,2, - - -

Iteration: ¢t = 1,72, . Ca|cu|ateU(i),t71(affl) and U(i),tq(azﬂ 1),
CalculateVU 4 (a(t — 1)) B Calculate Ay ():t—1 — U(z‘),t—l(a;fl 1)
Calculated(t) = a(t — 1) — fVU (@t — 1)) —UMt=1 (Y,

Selecta(t) = min {max {[a(t)]i, min}, 1} For eachi such thatAU )t~ > 0,
a’; _ a§71 + AU(i).t—l

af = max(min(al, 1), amin)-
End when: No improvement.

In this subsection, we focus on the learning algorithm with | Keep monitoring the deviation
the information structure available under local observability. | Start punishment scheme if there is a deviation
Under this condition, the nodes may not have the complete
information about the exact utility of others. Based on this

information structure, we develop two learning algorithms. . . : .
The first algorithm is calledearning through flooding The will be set in each node. If the node observes that its utility

second algorithm makes prediction of the other nodes’ Stafugctmn fluctuates more than the preset period of time, that

efficiency based on the flows that go through the predictirbcf ﬁgo%ail: pr()q[[;ce)?\IeVi'tst)e %C;I%rllogl] t:leesgie;:;itrllmt;r;qnetir;eergqexltoroeu dnd
node. We called the second algorithm lasrning through 9 P 9 ployed.

utility prediction When a node observes requests to prolong the waiting time, it
Y P . . L sets the maximum of the broadcasted waiting times and its own
1) Learning through FloodingThe basic idea of the learn-

: : . . ; . waiting time as the current waiting time. In this way, nodes
ing algorithm is as follow. Since the only information th J g Y

q b is the eff ¢ chanaing its f d_(?Nill wait until the effect of changing forwarding probability
hode can observe is the effect of changing its forwar ”lﬂopagates to the whole network before the next flooding

probability onto its own utility function. The best way for the changing of forwarding probability) happens. The maximum
nodes to learn the packet forwarding probability is to gradual elay can also be set to keep the delay time bounded

increase the probability and monitor if the utility function be- 2 L . ith il diction: In_ thi q
comes better. If the utility becomes better, the new forwarding} ) Learning with utility prediction: In t. IS second ap-
oach, we observe that some of the routing information can

probability will be employed. Otherwise, the old forwardin X .
e used to learn the system optimal solution (25). We assume

probability will be kept. The algorithm lets all nodes chang h i decision has b de bef torming th
their packet forwarding probabilities simultaneously. This ca at the routing decision has been made before performing the

be done by flooding the instruction for changing the packgfa_ckegfomardigg task.RFor_ instgnscs ' thhel rog';]e dis_cr(])very
forwarding probability. After changing the packet forwarding?JSIng ynamic Source Routing ( ) [12] algorithm without

probability, the effect propagates throughout the network. AfPute caching, the entire selected route is included in the
nodes wait for a period of time until the network becomegaCket header in the packet transmission. The intermediate

stable. At the end of this period, the nodes obtain their ne) des use th(_a route (in packet header) to_dgtermine to whom
utilities. If the utilities are better than the original ones, the e packet will be forwarded. Therefore, it is clear that the

the new packet forwarding probabilities are employed. Othé@nsmitting node knows where the packet goes through, the

wise, the old ones are kept. We note that the packet forwardi'}‘?d]""y'n(;gj r;]odes know whe(;e tEe packe:] comis from kand heads
probability increment is proportional to the increase in thg anTht € r(‘jecelvmg hr)o.ef NOWS where :j.e E)]ac (:T‘It. .com(fas
utility function: the nodes with higher increment in thei rom. The nodes use this information to predict the utllities o

utility functions increase their forwarding probability more_OtherS nodes. We _note that because not_gll node_s "’.‘re involved
9 all of the flows in the network, the utility prediction may

compared to the nodes with lower utility increment. Here, w . )
introduce the normalization factd?()*~(a!~?) (the utility not be perfectly accurate. But from the simulation results,
3

before changing the forwarding probability) in order to keig'aedggrzgt‘:rnce degradation is minimal since only the nearby

the updates in forwarding probability bounded. The forwardi - o _
probability increment depends on small increment consfant The utility predlcyon is illustrated using an example shown
and the normalization factor. The above process is performd-igure 4, assumings,) = 1, K = 1, andd(i, j) = 1. We
until no improvement can be made. The detailed algorithm denotel/”) as the utility of nodej predicted by node. From
shown in Table II. the figure, nodd receives flows from nod®, and nodet and

We note that the time until the network is stable is defingtpde4 receives flows from nodé and node2. It is obvious
as the time until all of the nodes do not observe fluctuatiotigat the flow from node to node4 is not perceived by node
in their utility functions as the result of flooding/changing- Hence, the utilities of nod2 and node3 predicted by node
forwarding probabilities in the previous round. In practicel are not the accurate ones. Similarly, the flow from néde
this waiting time can be either predefined or adjusted online tesnode 1 is not perceived by nodé. Therefore,Uf) and
follow: Depending on the size of the network, a waiting periodff) are not accurate. The accuracy of the prediction depends

B. Self-learning under the local observability
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> TABLE Il

@ @ fs\ @ SELF-LEARNING REPEATED-GAME ALGORITHM WITH UTILITY
\&/ N PREDICTION
U = aa; UY =1L, © =1#; U =a,a, Initialization: ¢t = 0
+a,+a,a +a,+o,0. ; . .
22 — ay)’t = v, Vi, j. Choose small increment
U0 —aay| U =Y = o U =aa; lteration: ¢ = 1,2, ---
U —o: U~y = o | P =a; For each nodg =1,--- |N
o T Lrgrae’| pe g Calculate
UY =a,; : i =0 P P
1 2> 5 Ny 5 Ny
@ U® —y® = , . U9 — g [V(-l) . vQN)] _ n=1Y; n=1U;
U" =a,a;; 2 3 1+(l3+0{2(l3’ B L 77 » Né)ol;l)’t ’ ’ NS&_ENM
U =UY = a,a; Calculatea!”" = {71 4 ¢V
j) . . . . . . (i))t — 3 (i),t
U indicates the utility of node j predicted by node i Set o = max(mln(@j +1), i)
End when:
Fig. 4. Example for learning with utility prediction No improvement and returagl) _ ay)"t,Vz’,j.
Keep monitoring the deviation, and go to
punishment scheme whenever there is a deviation.

on the flows. If all flows involving nodé pass through node
j then U;Z) will be accurate and vice versa as illustrated in
Figure 4. However, as we show by simulations the inaccuracx . , .

. I L node can obtain the announcement from the node’s previous
in the prediction does not affect the results of optimization tog". : . .
much neighbors. And the new neighbors will know the reputation

Since the objective of the optimization is to achieve th%f this new node. The analogy of this case in the real life is

system optimal solution (25), the best nadean do is to find when someone applies for a new job, the new employer always

the solution that minimizes the total average predicted utilif'é‘/Sks for the references from the O.Id employers. And both
function. which is mployers can work harmoniously in a distributed manner.

In the literature, the above idea is implemented in the trust

min Z;V:l Ui(j)(@l(1>7 . ’dz('N))’ (26) establishment for ad hoc network such as [16].
_ The other solution is by increasing the sampling of the
St amin < dgj) <1,Vj, learning algorithm. As long as the node mobility does not
() change the relationship between neighboring nodes drastically,

where &, is the packet forwarding probability that nodepe effect of mobility to the learning algorithm can be lever-
j should employ as predicted by node The detailed of j4eq by putiing more frequent learning period in the slotted
the algorithm is presented as in Table Ill. The algorithm if,nsmission as in Figure 1. This case is similar to tracking
Table Il imitates the steepest-descent algorithm based @fn stationary channel; the faster the channel changes the

the predicted utility, where every node finds the gradiepiore frequent the training sequence transmission is required.
of the predicted utility and optimizes the predicted system

utility (26). After obtaining {4V}, each node sets its own
packet forwarding probability as! = d§i). We note that the
optimization problem (26) can be done in a distributed manner,To investigate effectiveness of our proposed framework, we
since the optimization does not require the global knowledgerform simulations with the following settings. We generate
of the utility function. Each node does the optimization basddo networks with25 nodes: the ring-25 network and random-
on its own prediction and sets its packet forwarding probabili®5 network. The ring-25 network consists 25 nodes that
according to the optimized predicted average utility. are arranged in a circle with radid®00m. The random-25
Finally, we discuss how to handle the mobility of nodesietwork consists 025 nodes that are uniformly distributed in
We note that the scheme will work well in moderate nodéae area ofil000m x 1000m. We define the maximum distance
mobility when the neighbors of each node do not changk..., such that two nodes are connected if the distance
very often. Under this condition, the long-term relationshipetween two nodes is less thdp,.. We select the maximum
between nodes can be established by means of the repedisthnce between two nodes to ensure connectivity of the
game and reputation announcement as described in Sectidole network. In the ringV network, the angle separation
lll. As a result, the cooperation can be learned and enforcdmbtween two neighboring nodes % And, the distance
Obviously, the long-term relationship may be hard to estabetween two neighboring nodesassin(2%.), wherer is the
lish in the case where there is a node that deviates in one padius of the circle. In particular, the maximum distance for
of the network, moves quickly to the other part of the networlthe ring-25 network can be calculated 230 sin (é—g)m =
deviates again and so on so forth. In this case, there are @&0.7m. In the random-25 network, the maximum distance
possible solutions. First, when the node moves to a new plabefween two nodes i850m to ensure connectivity of the
in order for the node to transmit, some background checkvgole network with a high probability.
necessary. This can be done in two ways: first, if the nearbyWe also define the flows as source-destination (SD) pairs.
nodes can share the announcement, then the neighbors ofWeeassume that the routing decision has been made before

V. SIMULATION RESULTS
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performing packet forwarding optimization. The shortest path U(?) in ring—25 network

routing is employed in the simulations. In the random-25 _ Ei‘agee“icfiféﬁcy -

. L S verage efficiency wil leviation
network, we vary the number of SD pairs. When there are o8 —+— Average effciency withoLt deviation
traffic flows from all nodes to all other nodes, we called this 07f ]

traffic as dense flow that implies that each node has packets
destined to the rest of nodes in the network. Obviously, the
dense flow hasV x (N —1) SD pairs in theN-node network.
When the total flow is less than the dense flow, the SD pairs
are determined randomly. In the ring-25 network, the number
of SD pairs is defined in the following way. THé - N) SD o2k
pairs are obtained when every nodeends packets to nodes
({mod(i+2,25),--- ,mod(i + K +1,25)}. For instance25

stage efficiency

SD pairs are obtained when every nodéransmits packets % 5 0 1 20 25 20
to nodemod(i + 2, 25), 50 SD pairs are obtained when every time
node: sends packets to nodésiod(i+2, 25), mod(i+3, 25)}, (a) Ring network
etc. Thg rgst of the S|mulat|qn parameters are given as fpllows, U9 iny random network with 16 nodes
transmission rate of sourceas y; = 1, Vi, transmission 07 ‘ —

. . .. —&— Stage efficiency
constantK = 1, distant attenuation coefficient = 4. We | = Average effciency with deviation
compare three learning algorithms according to the informa- o6 | [+ Average efficiency without devation

tion availability. The parameters for the learning algorithms
are listed as follows3 = 0.05, £ = 0.001, n = 1.0, and

¢ = 0.05. The minimum forwarding probability is set to be
amin = 0.1 and the maximum forwarding probability is set
to be anee = 1. Finally, all algorithms are initiated with
ag = 0.5,Vi. We note that in the following simulations, we
employ the average efficiency per node defined in (25) as our A A b KSR A
performance metric. Ar ‘

Figure 5(a) shows the average efficiency of the deviation ‘ ‘ ‘ ‘ ‘ ‘
node in the ring-25 network when the number of source- L T
destination is75 with the discounted facto§ = 0.9. In the
figure, noded deviates at time instant. This deviation causes
the stage efficiencies of node2 and25 become lower. From rig. 5. punishment of repeated game in the ring network and the random
the route, nodel, node2 and node25 suspect that nodes network
in {2,3,4}, {3,4,5} and{1, 2,3} are deviating, respectively.

The nodes in the network know that noflds consistent to observability, learning with flooding, and learning with utility
be incriminated for deviation and start the punishment stagesdiction. In Figure 6, all of the algorithms achieve the
(Here, the punishment period is set 3. The punishment system optimal value when the source-destination pairs are
scheme results in lower average stage efficiency as descrih@d, 200, and 275. The learning with perfect observability

in Figure 5(a). From the figure, the average efficiency withoand the learning with utility prediction have approximately the
deviation is better than the average efficiency with deviatiosame convergence speed. The learning with flooding converges
It is clear that it is better off for nod8 to conform to the slower, since the learning with flooding does the trial-and-
previously agreed cooperation point. As the result, no noéeror to find the better forwarding probabilities. This unguided
wants to deviate, since the deviation results in worse averag@imization although requires minimal information has the
efficiency. Similarly, Figure 5(b) shows the average utilities ahferior convergence speed. Figure 7 shows the learning curves
deviating node and other nodes in the random network with the proposed algorithms for random-25 network with differ-
16 nodes with the discounted factor9. At time instantll, ent source-destination pairs. One can observe that the learning
node10 in the network deviates. At the next time instant, alvith utility prediction achieves very close efficiency per node
related nodes that detect deviation exchange the list of tbempared to the optimal solution and learning with perfect
incriminated nodes. The consistent incriminated node (in thi®servation. In contrast, the learning with flooding achieves
case nodd0) is punished for a certain period of time (in thisnferior efficiency per node.

figure, 8 period of time). From the figure, it is clear that node Figure 8(a) shows the learned average efficiency per node
10 will have higher average efficiency when it conforms. Stor the various algorithms with different traffic flows in the
from Figure 5(a) and Figure 5(b), the proposed repeated garirgy-25 network. The efficiency becomes lower as the number
can enforce the cooperation among autonomous greedy noaéssource-destination pairs become larger. This can be ex-

Figure 6 and Figure 7 show the learning curves for thglained as follows. Because of the symmetric property of the
proposed self-learning repeated-game scheme for the rimgjlity functions, the local optimal forwarding probabilities for
25 network and the random-25 network, respectively. In ttedl nodes are the same. It can be easily shown that the local
figures, we compare the optimal solution, learning with perfeoptimal forwarding probabilities in the ring-25 network is

Stage efficiency
o o o
w N (62

o
N
T

o
N

(=}

(b) Random network
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efficiency compared to the Nash Equilibrium. In average, the
Fig. 7. Learned average efficiency per node for different traffic loads in thearning with utility prediction achieves arou®d.2% of the
random network efficiency achieved by the optimal solution. In contrast, the

learning with flooding achieves more thar3.18% of the

for all node$. Therefore, the larger the number of sourceqpt'ma“ty'_ _

destination pairs, the more packets a node needs to forward©mparing Figure 8(a) and 8(b), we can see that the
and the higher value of the denominator of the stage utilif§@ning with flooding performs well in the ring-25 network
function in (7). As the result, the average efficiency per nod!t inferior in the random-25 network. The reason for this
decreases as the number of source-destination increases. URftfjiomenon is that in the ring-25 network, the utilities of all

simple calculation, it can be shown that the average efficien@§des aré symmetric and optimizing the system criterion (25)
per node decays is Naa/N whereN,, résults in the same average efficiency in each node. Since the
! s

. Noa/N+0.5+(Noa/N+1)*(Noa/N)* i i i i i i , ici
is the number of solirce-destination palrsd. In Figure 8(a), Jgarning with flooding tries to increase its node’s efficiency

learning algorithms perform similarly for the differentnumberQY chang!ng it; own forwarding probgbility synchronously,
of source-destination pairs. this iteration will finally reach the point where all nodes’
Figure 8(b) shows the achievable efficiency per node aftgfficiencies are the same due to the symmetric structure of
the learning algorithms converge for different numbers &€ network. This solution is coincidentally the same as the
source-destination pairs in the random-25 network. We obseution of the system criterion (25) optimization. In contrast
that the learning with utility prediction achieves very clost? the ring-25 network, the utility functions for each node are
efficiency compared to the learning with perfect observatidhighly asymmetric in the random-25 network. In this case, the
and the optimal solution. The learning with flooding achievdide that firstly reaches a better solution will not change its

lower efficiency per node, but still achieves much bettdprwarding probability, even though changing its forwarding
probability results in slightly lower efficiency in that particular

node but increases the other nodes’ efficiencies significantly.

2This is not true in the random network in general.
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TABLE IV
NORMALIZED AVERAGE EFFICIENCY PER NODE FOR DIFFERENT NODES IN THE RANDOM NETWORK WITH DENSE TRAFFIC

[ Number of nodes I 9 [ 16 | 25 [ 3 [ 49 [ 6 [ 81 |
Average efficiency per nod¢l 0.7438 0.7581 0.5930 0.5574 0.5629 0.5316 0.4916
(Optimal solution)
Normalized learning 99.63% | 99.91% | 99.39% 100% 100% 100% 99.94%
perfect observability
Normalized learning 84.79% | 71.45% | 72.81% | 65.36% | 68.56% | 58.21% | 59.40%
using flooding
Normalized learning 100% 97.91% | 98.98% | 99.27% | 96.59% | 99.88% | 96.70%
using utility prediction

Due to this greedy and unguided optimization, the learnirdistributed nodes to find better cooperating points. Depending
with flooding achieves inferior average efficiency per noden the information structures, the proposed learning algorithm
compared to the learning using utility prediction which obtainsy flooding and with utility prediction achieve0% ~ 85%
information from routing information and performs betteand 96% ~ 100% of the efficiency that is obtained by
learning. the optimal solution with global information and centralized

Next, we investigate the performances of the learning aptimization.
gorithms in the dense flow with different number of nodes in
the random network. Table IV shows the average efficiency REFERENCES
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